Axiomatic Definition of Entropy for Nonequilibrium States

نویسنده

  • Gian Paolo Beretta
چکیده

In introductory courses and textbooks on elementary thermodynamics, entropy is often presented as a property defined only for equilibrium states, and its axiomatic definition is almost invariably given in terms of a heat to temperature ratio, the traditional Clausius definition. Teaching thermodynamics to undergraduate and graduate students from all over the globe, we have sensed a need for more clarity, unambiguity, generality and logical consistency in the exposition of thermodynamics, including the general definition of entropy, than provided by traditional approaches. Continuing the effort pioneered by Keenan and Hatsopoulos in 1965, we proposed in 1991 a novel axiomatic approach which eliminates the ambiguities, logical circularities and inconsistencies of the traditional approach still adopted in many new books. One of the new and important aspects of our exposition is the simple, non-mathematical axiomatic definition of entropy which naturally extends the traditional Clausius definition to all states, including non-equilibrium states (for which temperature is not defined). And it does so without any recourse to statistical mechanical reasoning. We have successfully presented the foundations of thermodynamics in undergraduate and graduate courses for the past thirty years. Our approach, including the definition of entropy for non-equilibrium states, is developed with full proofs in the treatise E. P. Gyftopoulos and G. P. Beretta, Thermodynamics. Foundations and Applications, Dover Edition, 2005 (First edition, Macmillan, 1991) [1]. The slight variation we present here illustrates and emphasizes the essential elements and the minimal logical sequence to get as quickly as possible to our general axiomatic definition of entropy valid for nonequilibrium states no matter how “far” from thermodynamic equilibrium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential of Entropic Force in Markov Systems with Nonequilibrium Steady State, Generalized Gibbs Function and Criticality

In this paper, we revisit the notion of the “minus logarithm of stationary probability” as a generalized potential in nonequilibrium systems and attempt to illustrate its central role in an axiomatic approach to stochastic nonequilibrium thermodynamics of complex systems. It is demonstrated that this quantity arises naturally through both monotonicity results of Markov processes and as the rate...

متن کامل

Generalized information and entropy measures in physics

The formalism of statistical mechanics can be generalized by starting from more general measures of information than the Shannon entropy and maximizing those subject to suitable constraints. We discuss some of the most important examples of information measures that are useful for the description of complex systems. Examples treated are the Rényi entropy, Tsallis entropy, Abe entropy, Kaniadaki...

متن کامل

Generalised information and entropy measures in physics

The formalism of statistical mechanics can be generalised by starting from more general measures of information than the Shannon entropy and maximising those subject to suitable constraints. We discuss some of the most important examples of information measures that are useful for the description of complex systems. Examples treated are the Rényi entropy, Tsallis entropy, Abe entropy, Kaniadaki...

متن کامل

Axiomatic Relation between Thermodynamic and Information-Theoretic Entropies.

Thermodynamic entropy, as defined by Clausius, characterizes macroscopic observations of a system based on phenomenological quantities such as temperature and heat. In contrast, information-theoretic entropy, introduced by Shannon, is a measure of uncertainty. In this Letter, we connect these two notions of entropy, using an axiomatic framework for thermodynamics [E. H. Lieb and J. Yngvason Pro...

متن کامل

Comment I on "Possible experiment to check the reality of a nonequilibrium temperature"

where s,z(u) is the local-equilibrium entropy, T the local-equilibrium absolute temperature, q the heat flux, A, Some of the most basic questions in nonequilibrium thermodynamics are those concerning the fundamental thermodynamic concepts, namely, the definition and meaning of entropy and of absolute temperature out of equilibrium. Most of the nonequilibrium thermodynamic theories have assumed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008